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Abstract. Considering the inter-site electron–electron interaction, we investigate the ground state
and spin-wave excitation of a theoretical model proposed for quasi-one-dimensional π -conjugated
organic polymer ferromagnets. Within mean-field theory, the ground state of the system is shown to
be a high-spin ferromagnetic state due to the topological structure of the system. By employing the
random-phase approximation (RPA), the spin-wave excitation spectrum is obtained. It is found that
the acoustic spin-wave mode displays the feature of the ferromagnetic magnon, and the inter-site
electron–electron interaction has influence on it. With the increase of inter-site electron–electron
interaction, the high-spin ferromagnetic ground state of the system will be unstable.

1. Introduction

In recent years, with the discovery of organic conductors and organic superconductors, there
is great interest in the design and construction of organic magnetic materials [1–5]. Several
research groups in the world have successfully synthesized organic ferromagnets, such as poly-
BIPO [6], m-PDPC [7] and p-NPNN [8]. Since the known cases of ferromagnetism always
involve spins of either d or f electrons, which play an essential role in the mechanism of the
ferromagnetic interaction, the mechanism of the magnetically ordered state in organic materials
containing only p electrons is, therefore, a great challenge that has attracted considerable
attention.

McConnell [9] first proposed to produce intermolecular ferromagnetic interaction in
organic molecules in 1963. Ovchinnikov and Spector [10] proposed that organic π -conjugated
polymers with organic free radicals might exhibit ferromagnetic interaction, and suggested a
simplified structure schematically shown in figure 1(a) to describe the ferromagnetic order in
the organic ferromagnets. The main chain consists of carbon atoms each with a π electron
and R is a kind of side radical containing an unpaired electron. They treated the π electrons
along the main carbon chain as an antiferromagnetic spin chain, and assumed that there are
antiferromagnetic interactions between the π -electron spin and the residual spin of radical R.
If the radicals are attached to the main carbon chain in such a definite way, all of the residual
spins at the side radicals will tend to be in the same direction as shown in figure 1(b) and the
ferromagnetic order is maintained. Recently, Fang et al [11] proposed a theoretical model
for the quasi-one-dimensional organic ferromagnet and obtained a ferromagnetic ground state.
Upon that, Wang et al [12] investigated the spin-wave properties of the system. In their model,
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Figure 1. (a) The simplified structure of a quasi-one-dimensional organic polymer ferromagnet
and (b) the arrangement of spin.

the π electrons along the main carbon chain are considered to be itinerant while the unpaired
electrons at the side radicals are regarded to have no freedom except their spins.

The main purpose of this paper is to study the spin-wave excitation in a quasi-one-
dimensional π -conjugated organic ferromagnet with inter-site electron–electron interaction
based on its simplified structure as shown in figure 1(a). The system is described by a theoretical
model in which the unpaired electrons at the side radicals are no longer regarded as being totally
localized. In section 2, we give the model Hamiltonian in which the Hubbard on-site electron–
electron repulsion, the inter-site electron–electron Coulomb repulsion and the hopping of the
π electrons on the main chain as well as the unpaired electrons at the side radicals are taken
into account. The ground state of the system is also discussed in section 2. In section 3, we
study the spin-wave excitation of the system by the random-phase approximation (RPA). The
conclusions are given in section 4.

2. The model Hamiltonian and ground state

The model Hamiltonian employed in our study has the following form:

Ĥ = −T
∑
l,σ

(â+
l1σ â(l−1)2σ + â+

l1σ âl2σ + HC) − T ′ ∑
l,σ

(â+
l2σ âl3σ + HC)

+
∑
l

(Un̂l1αn̂l1β + Un̂l2αn̂l2β + U ′n̂l3αn̂l3β)

+
∑
l

∑
σ,σ ′

(V n̂(l−1)2σ n̂l1σ ′ + V n̂l1σ n̂l2σ ′ + V ′n̂l2σ n̂l3σ ′). (1)

Here, â+
lmσ (âlmσ ) denotes the creation (annihilation) operator of an electron at a site specified

by l, m and spin σ (= α, β) where α and β denote up-spin and down-spin, respectively.
l (= 1, 2, . . . , N) labels the unit cell which contains two carbon sites of the main chain and
one side radical, m (= 1, 2) labels two carbon sites while m (= 3) labels the R side radical.
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Figure 2. The electronic energy bands with t ′ = 0.9, u = u′ = 0.9 and v = v′ = 0.2.

T is the hopping integral between two neighbouring π electrons along the main chain while
T ′ is the hopping integral between a π electron on the main chain and an unpaired electron
at the side radical. U and U ′ are the Hubbard on-site e–e repulsion of π electrons on the
main chain and unpaired electrons at the side radical, respectively. V describes the inter-site
e–e Coulomb repulsion of π electrons on the main chain while V ′ describes the inter-site e–e
Coulomb repulsion between a π electron on the main chain and an unpaired electron at the
side radical, and n̂lmσ = â+

lmσ âlmσ .
It is convenient to use the following transformations:

ĥ = Ĥ

T
t ′ = T ′

T
u = U

T
u′ = U ′

T
v = V

T
v′ = V ′

T
. (2)

Then, the Hamiltonian Ĥ becomes

ĥ = −
∑
l,σ

(â+
l1σ â(l−1)2σ + â+

l1σ âl2σ + HC) − t ′
∑
l,σ

(â+
l2σ âl3σ + HC)

+
∑
l

(un̂l1αn̂l1β + un̂l2αn̂l2β + u′n̂l3αn̂l3β)

+
∑
l

∑
σ,σ ′

(vn̂(l−1)2σ n̂l1σ ′ + vn̂l1σ n̂l2σ ′ + v′n̂l2σ n̂l3σ ′). (3)

In order to deal with the term of the Hubbard on-site e–e repulsion and inter-site e–e
Coulomb repulsion in Hamiltonian ĥ, we use the Hartree–Fock approximation. By introducing
Fourier transformation, within the mean-field theory, the energy spectrum can be obtained
through the self-consistent iterative numerical calculation method. The corresponding results
are shown in figure 2 for t ′ = 0.9, u = u′ = 0.9 and v = v′ = 0.2.

As seen from figure 2, the energy spectrum contains three up-spin and three down-spin
energy bands. In the ground state, the lowest two up-spin energy bands and one down-
spin energy band will be filled while the higher three energy bands will be empty. In
consideration of the topological structure of the system the ground state of the system is a
high-spin ferromagnetic state.
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3. Magnon excitation

We now turn to the problem of low-lying magnetic excitation.
Transforming â+

lmσ and âlmσ into the Fourier components with wavevector k,

â+
lmσ = N−1/2

∑
k

exp(−ikl)â+
kmσ (4a)

âlmσ = N−1/2
∑
k

exp(ikl)âkmσ . (4b)

Then the Hamiltonian (equation (3)) can be written as

ĥ =
∑
k,σ

â+
kσM(k)âkσ +

1

N

∑
k,k′

∑
q

3∑
m=1

[u + (u′ − u)δm,3]â+
k+q/2,m,αâk−q/2,m,αâ

+
k′−q/2,m,β

×âk′+q/2,m,β +
1

N

∑
k,k′

∑
q

∑
σ,σ ′

∑
m=1,3

[v + (v′ − v)δm,3][1 + exp(−iq)δm,1]

×â+
k+q/2,m,σ âk−q/2,m,σ â

+
k′−q/2,2,σ ′ âk′+q/2,2,σ ′ . (5)

Here, â+
kσ is defined as

â+
kσ = (â+

k1σ , â
+
k2σ , â

+
k3σ ) (6)

and M(k) is a 3 × 3 matrix.
From the equation

M(k)Vi(k) = Ei(k)Vi(k) (i = 1, 2, 3) (7)

we can obtain eigenvalue Ei(k) (E1(k) > E2(k) > E3(k)) and eigenvector Vi(k) of M(k).
V +
i (k) is a three-dimensional row vector:

V +
i (k) = (V ∗

1i (k), V
∗

2i (k), V
∗

3i (k)). (8)

With the transformation

â+
kmσ =

3∑
n=1

V ∗
mn(k)ĉ

+
knσ (9a)

âkmσ =
3∑

n=1

Vmn(k)ĉknσ (9b)

equation (5) can be written as follows:

ĥ =
∑
k,σ

3∑
i=1

Ei(k)ĉ
+
kiσ ĉkiσ +

1

N

∑
k,k′

∑
q

3∑
m=1

[u + (u′ − u)δm,3]

×
∑
i1,i2,
i3,i4

V ∗
mi1

(
k +

q

2

)
Vmi2

(
k − q

2

)
V ∗
mi3

(
k′ − q

2

)
Vmi4

(
k′ +

q

2

)

×ĉ+
k+q/2,i1,αĉk−q/2,i2,αĉ

+
k′−q/2,i3,β ĉk′+q/2,i4,β

+
1

N

∑
k,k′

∑
q

∑
σ,σ ′

∑
m=1,3

[v + (v′ − v)δm,3][1 + exp(−iq)δm,1]

×
∑
i1,i2,
i3,i4

V ∗
mi1

(
k +

q

2

)
Vmi2

(
k − q

2

)
V ∗

2i3

(
k′ − q

2

)
V2i4

(
k′ +

q

2

)

×ĉ+
k+q/2,i1,σ ĉk−q/2,i2,σ ĉ

+
k′−q/2,i3,σ ′ ĉk′+q/2,i4,σ ′ . (10)
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As shown in figure 2, the ground state of the system turns to be a six-band case with Fermi
surface in the gap. There are four possible spin flips from the lowest two occupied up-spin
energy bands to the highest and the middle localized unoccupied down-spin energy bands, and,
in the meanwhile, there is one possible spin flip from the lowest occupied down-spin energy
band to the highest unoccupied up-spin energy band. Thus, the spin-wave excitation with spin
flip can be described in the following form [13]:

γ̂ +
αq =

∑
k

A1(k)ĉ
+
k+q/2,1,β ĉk−q/2,2,α +

∑
k

A2(k)ĉ
+
k+q/2,1,β ĉk−q/2,3,α

+
∑
k

A3(k)ĉ
+
k+q/2,2,β ĉk−q/2,2,α +

∑
k

A4(k)ĉ
+
k+q/2,2,β ĉk−q/2,3,α

+
∑
k

A5(k)ĉ
+
k+q/2,3,β ĉk−q/2,1,α (11a)

γ̂ +
βq =

∑
k

A′
1(k)ĉ

+
k−q/2,2,αĉk+q/2,1,β +

∑
k

A′
2(k)ĉ

+
k−q/2,3,αĉk+q/2,1,β

+
∑
k

A′
3(k)ĉ

+
k−q/2,2,αĉk+q/2,2,β +

∑
k

A′
4(k)ĉ

+
k−q/2,3,αĉk+q/2,2,β

+
∑
k

A′
5(k)ĉ

+
k−q/2,1,αĉk+q/2,3,β . (11b)

Here Ai(k) and A′
i (k) (i = 1, 2, . . . , 5) are coupling coefficients.

The equations of motion for magnon excitation are

ωα(q)γ̂
+
αq = [ĥ, γ̂ +

αq] (12a)

ωβ(q)γ̂
+
βq = [ĥ, γ̂ +

βq], (12b)

where ωα(q) and ωβ(q) denote magnon excitation energy for the α branch and β branch,
respectively. By introducing the random-phase approximation (RPA) [14, 15], we can obtain
equations for Ai(k) and A′

i (k) (i = 1, 2, . . . , 5) (see the appendix) from equations (12). These
equations can be solved numerically.

Figure 3 exhibits the dispersion relations of magnon excitation for different branches
when t ′ = 0.9, u = u′ = 0.9 and v = v′ = 0.2. It is shown that the spectrum
of magnon excitation contains five energy branches—one acoustic branch and four optical
branches. The four lower energy branches of magnons α1,2,3,4 refer to γ̂ +

αq while the
highest one β refers to γ̂ +

βq , and the γ̂ +
αq and γ̂ +

βq correspond to the spin flip of up spin and
down spin, respectively. As seen from figure 3, the lowest branch (acoustic mode) of the
magnon excitation spectrum shows a quadratic-like dispersion relation when q is small, which
means that the magnon excitation of the system displays the feature of the ferromagnetic
magnons.

Figures 4 and 5 show several acoustic modes when t ′ = 0.9, u = u′ = 0.9 and t ′ = 0.9,
u = u′ = 1.2, respectively. Curves a, b, c, d and e correspond, respectively, to inter-
site electron–electron Coulomb repulsion v = v′ = 0.0, 0.2, 0.4, 0.6 and 0.8. It can be
seen that the inter-site electron–electron Coulomb repulsion has an influence on the acoustic
mode. The excitation becomes rather easy when the inter-site electron–electron Coulomb
repulsions v and v′ are large, which indicates that the ferromagnetic correlation in the system
is weaker and, furthermore, is unfavourable to the stability of the ferromagnetic ground state.
Comparing figure 4 with 5, one can see that the smaller the Hubbard on-site electron–electron
repulsion is, the smaller the excitation becomes and, with increasing v and v′, the quicker the
decreasing of the excitation is. So, it is important to refrain from the strong inter-site electron–
electron Coulomb repulsion and, meanwhile, to stimulate the strong Hubbard on-site electron–
electron repulsion in order to preserve the high-spin ferromagnetic ground state of the system.
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Figure 3. The dispersion relation of the magnon with t ′ = 0.9, u = u′ = 0.9 and v = v′ = 0.2.
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Figure 4. The acoustic modes for different inter-site e–e Coulomb repulsion: (a) v = v′ = 0.0,
(b) v = v′ = 0.2, (c) v = v′ = 0.4, (d) v = v′ = 0.6 and (e) v = v′ = 0.8 when t ′ = 0.9 and
u = u′ = 0.9.

In addition, when the inter-site Coulomb interaction v or v′ is taken into account separately, our
calculations show that the Coulomb interaction (v) between the nearest-neighbour π electrons
on the main chain plays a more effective role in suppressing the ferromagnetic correlation than
that (v′) between an unpaired electron at the side radical and a π electron on the main chain
does.
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Figure 5. The acoustic modes for different inter-site e–e Coulomb repulsion: (a) v = v′ = 0.0,
(b) v = v′ = 0.2, (c) v = v′ = 0.4, (d) v = v′ = 0.6 and (e) v = v′ = 0.8 when t ′ = 0.9 and
u = u′ = 1.2.

It should be noticed that the mean-field theory and random-phase approximation (RPA),
which neglect the fluctuations, are not sufficient to discuss the complete physical picture as-
sociated with the (quasi-) one-dimensional system. However, realistic materials are just the
quasi-one-dimensional chain, and for some organic polymers such as polyacetylene [16–18]
and organic ferromagnets [11–13], many significant results can be obtained from the mean field
approximation and RPA while studying their energy bands or excitation energies. In this paper,
within the mean-field approximation and RPA, we just study the ground state and low-lying ex-
cited state of the system at absolute zero temperature since most organic ferromagnets exhibit
spontaneous magnetization at very low temperature near T = 0 K; the fluctuations can be ne-
glected temporarily. We also noticed that the relative physical pictures obtained by employing
some other methods, such as quantum Monte Carlo simulation [19], in a quasi-one-dimensional
Hubbard chain are similar to those obtained from our Hartree–Fock approximation [11].

4. Conclusions

We have studied the ferromagnetic properties of a quasi-one-dimensionalπ -conjugated organic
ferromagnetic model based on the simplified structure as shown in figure 1(a). The Hubbard on-
site electron–electron repulsion as well as the inter-site electron–electron Coulomb repulsion
is taken into account. With mean-field theory, the system shows a high-spin ferromagnetic
ground state.

The magnon excitation is studied in the random-phase approximation. The magnon
excitation spectrum that contains an acoustic branch and four optical branches is obtained.
The lowest acoustic branch has been found to possess the characteristic of the ferromagnetic
magnon. The acoustic mode is influenced by the inter-site electron–electron Coulomb
repulsion, and with the increase of the inter-site electron–electron Coulomb repulsion, the
stability of the high-spin ferromagnetic ground state of the system will be spoiled.
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Appendix

Equations for Ai(k) (i = 1, 2, . . . , 5):

Ai(k) =
[
ωα(q) − Eτ

(
k +

q

2

)
+ Eν

(
k − q

2

)]−1
[ 3∑

m=1

[u + (u′ − u)δm,3]

×
{
Ai(k)

[
V ∗
mτ

(
k +

q

2

)
Vmτ

(
k +

q

2

) 1

N

∑
k′

ζ1(k
′;m)

−V ∗
mν

(
k − q

2

)
Vmν

(
k − q

2

) 1

N

∑
k′

ζ2(k
′;m)

]

+(1 − δi,5)

[
Ai ′(k)V

∗
mτ

(
k +

q

2

)
Vmν ′

(
k +

q

2

) 1

N

∑
k′

ζ1(k
′;m)

−Ai ′′(k)V
∗
mτ ′

(
k − q

2

)
Vmν

(
k − q

2

) 1

N

∑
k′

ζ2(k
′;m)

]

−V ∗
mτ

(
k +

q

2

)
Vmν

(
k − q

2

) 1

N

∑
k′

ζ3(k
′;m)

}

+
∑
m=1,3

[v + (v′ − v)δm,3]

{
(1 + δm,1)

(
Ai(k)

[
V ∗

2τ

(
k +

q

2

)
V2τ

(
k +

q

2

) 1

N

×
∑
k′

ζ1(k
′;m) + V ∗

mτ

(
k +

q

2

)
Vmτ

(
k +

q

2

) 1

N

∑
k′

ξ1(k
′) − V ∗

2ν

(
k − q

2

)

×V2ν

(
k − q

2

) 1

N

∑
k′

ζ2(k
′;m) − V ∗

mν

(
k − q

2

)
Vmν

(
k − q

2

) 1

N

∑
k′

ξ2(k
′)
]

+(1 − δi,5)

[
Ai ′(k)

[
V ∗

2τ

(
k+

q

2

)
V2ν ′

(
k+

q

2

) 1

N

∑
k′

ζ1(k
′;m) + V ∗

mτ

(
k+

q

2

)

×Vmν ′
(
k +

q

2

) 1

N

∑
k′

ξ1(k
′)
]

− Ai ′′(k)

[
V ∗

2τ ′

(
k − q

2

)
V2ν

(
k − q

2

)

× 1

N

∑
k′

ζ2(k
′;m) + V ∗

mτ ′

(
k − q

2

)
Vmν

(
k − q

2

) 1

N

∑
k′

ξ2(k
′)
]])

−V ∗
2τ

(
k +

q

2

)
Vmν

(
k − q

2

) 1

N

∑
k′

η1(k, k
′;m)

−V ∗
mτ

(
k +

q

2

)
V2ν

(
k +

q

2

) 1

N

∑
k′

η2(k, k
′;m)

}]

where

ζ1(k
′;m) = V ∗

m2(k
′)Vm2(k

′) + V ∗
m3(k

′)Vm3(k
′) ζ2(k

′;m) = V ∗
m3(k

′)Vm3(k
′)

ζ3(k
′;m) = A1(k

′)V ∗
m2

(
k′ − q

2

)
Vm1

(
k′ +

q

2

)
+ A2(k

′)V ∗
m3

(
k′ − q

2

)
Vm1

(
k′ +

q

2

)
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+A3(k
′)V ∗

m2

(
k′ − q

2

)
Vm2

(
k′ +

q

2

)
+ A4(k

′)V ∗
m3

(
k′ − q

2

)
Vm2

(
k′ +

q

2

)

−A5(k
′)V ∗

m1

(
k′ − q

2

)
Vm3

(
k′ +

q

2

)

ξ1(k
′) = V ∗

22(k
′)V22(k

′) + V ∗
23(k

′)V23(k
′) ξ2(k

′) = V ∗
23(k

′)V23(k
′)

η1(k, k
′;m) = {1 + exp[−i(k′ − k)]}

[
A1(k

′)V ∗
m2

(
k′ − q

2

)
V21

(
k′ +

q

2

)

+A2(k
′)V ∗

m3

(
k′ − q

2

)
V21

(
k′ +

q

2

)
+ A3(k

′)V ∗
m2

(
k′ − q

2

)
V22

(
k′ +

q

2

)

+A4(k
′)V ∗

m3

(
k′ − q

2

)
V22

(
k′ +

q

2

)
− A5(k

′)V ∗
m1

(
k′ − q

2

)
V23

(
k′ +

q

2

) ]

η2(k, k
′;m) = {1 + exp[−i(k − k′)]}

[
A1(k

′)V ∗
22

(
k′ − q

2

)
Vm1

(
k′ +

q

2

)

+A2(k
′)V ∗

23

(
k′ − q

2

)
Vm1

(
k′ +

q

2

)
+ A3(k

′)V ∗
22

(
k′ − q

2

)
Vm2

(
k′ +

q

2

)

+A4(k
′)V ∗

23

(
k′ − q

2

)
Vm2

(
k′ +

q

2

)
− A5(k

′)V ∗
21

(
k′ − q

2

)
Vm3

(
k′ +

q

2

) ]

and

i ′ = 3, i ′′ = 2, τ = 1, τ ′ = 3, ν = 2, ν ′ = 2 for i = 1;
i ′ = 4, i ′′ = 1, τ = 1, τ ′ = 2, ν = 3, ν ′ = 2 for i = 2;
i ′ = 1, i ′′ = 4, τ = 2, τ ′ = 3, ν = 2, ν ′ = 1 for i = 3;
i ′ = 2, i ′′ = 3, τ = 2, τ ′ = 2, ν = 3, ν ′ = 1 for i = 4;
τ = 1, ν = 3 for i = 5.

Here, wavevectors |k|, |k′| and |q| take their values from zero to π . Equations for A′
i (k)

(i = 1, 2, . . . , 5) have a similar form to the above equations.
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